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1 Revision and Introduction

1.1 Summary of Thermodynamics

0.Law: The relation of the equilibrium is transitive; two
systems in equilibrium have the same temperature.
1.Law: dU = 6Q + 6W, change in internal energy U is due to
heat Q supplied to or work W done on the system.
2.Law: The Carnot-process is the most

efficient. Effieciency for any engine:
n=W/Q=1-0,/¢

(using Q; = Q; + W)

Efficiency of a Carnot-process:
Ne=1-T,/T

All reservible processes have the efficiency 7!

Reversible processes:
1-%2_1_D 9 _ Q2 _
Q1 Ty Ty Ty
define entropy of reversible processes dS = dQ.ey/T
Since gﬁ dS = 0, S is a state function and path-
independent, so that f: dS =Sz — S,
dQ =TdS and dW = pdV yield dU = TdS + pdV
Irreversible processes

1-2<1-2 o &a_
Q1 Ty T1

<0 = 56—<0

Also: fA dS < Sz — 4,50 that dQ/T <ds
Summary for any process:
$¢<0, L<ds
= dS = 0fordQ = 0 (isolated system)
In general, dU = §Q + 6W = TdS — pdV is correct, but
6Q = TdS and 6W = —pdV is only true for rev. proc.
Including the exchange of particles and writing E instead of U:

1
dE =TdS —pdV + pdN <  dS :TdE+§dV—%dN

Obviously itis E = E(S,V,N) and S = S(E,V, N) and Boltzmanns
idea was S(E,V,N) = kIn(W(E,V,N)).
Helmholtz free energy: F := E — TS and it follows
dF = —pdV —SdT = F =F(T,V)
Similarly is H = H(S,p) = U + pV the enthalpy and
G = G(T,p) = F + pV the Gibb’s free energy.

1.2 Example: Distribution of Gas Molecules

Consider a Volume V with N gas molecules with a smaller
Volume v inside V. How many molecules n are inside v in
average?

Define p := v/V (probability, that a given molecule is in v) and
q = 1 — p. Then the probability that n of N molecules are inside

n,N-n

v is given by Py (n) = ( )p q
YN o Py(n) = (p+ q)" = 1Y = 1. Now, the average number of
molecules inside v is:

, which is normalized, since

N N
N!
<n>=;nPN(n)—;nPN(n) Z(n St
— (N_l)! n-1,N-n
" LG -mi? 1
N-1
=Np Zn'(f\/ ) A —n-DiP T =N+ )" = Np

(which is what you would expect)

What about the fluctuation?
={((n — (n)?) = (n* — 2n(n) + (n)?)
= (n?) — (2n(n)) + ((n)?) = (n?) — 2(n}(n) + (n)?

= (n?) — (n)* = (n®) + (n) — (n) — (n)*
=(n(n— 1)+ (n) — (n)* (n) = Np is constant!
Let’s calculate first
N
(=)= Y n(n-1) Py
n=2
N
(N =2)!
— N(N _ 1)p2 Z ‘n.—ZqN—n
n=2 (n =2t (N —n)! Stirling
N-2 Approximatio
(N —2)! pp
= N(V = 1)p? Z _ W TAr  aoNen-2 nlnnl~
P nzon!(N_n_Z)!p 1 nlnn —n and
p+tqg=1

=N -Dp*(p+ " ?=NWN - 1)p?
This yields 62 = N(N — 1)p? + Np — N?p? = Npq.
In a room with roughly N = 102% molecules and p = 0,1, the
fluctuation is about ¢ = \/Npq ~ 10*2.
Where is the peak of Py (n)? Expectation: (n). Calculation:
Equivalent: Peak von In Py (n) (easier):
InPy(n) =InN!—Inn! —In(N —n)!+nlnp — (N —n)Ingq
~NInN—-—nlnn—(N—-—n)In(N—n) +nlnp+ (N —n)lng

d !
%PN(n)z—lnn+ln(N—n)+ln§=lO & n=Np
Shape of the peak: Taylor Expansion von In Py (n):
d? 1 1 p+q 1
l P, - = —_———
dnz " w () n N —nlypnp Npq o?

n=Np
= InPy(n) ~ Py((n)) — = (n — (n))?

& Py(n) = Py((n))e~™=(M*/29” (Gaussian Distribution)




2 Basic ideas

2.1 Types of Systems and States
Isolated System:
E,V,N fixed, Microcanoical Ensemble, S = kInW
Closed System:
T,V,N fixed (equilibrium with heat bath), Canonical
Ensemble, F = —kTInZ
Open System:
T,V, u fixed (equilibrium with heat bath and particle
reservoir), Grand Canonical Ensemble

Explain Micro-/Macrostate and Distribution with example of
N = 3 distinguishable particles with allowed energy states E; =
m;&, m; € N and total energy E = 3¢.

Microstates:
Energy level of each particle, e.g. E; = 3¢, E, = 0¢, E; = 2¢is
one microstate.
Since particles are distinguishable in this case,
rearrangement of the same energy values among the
particles are different microstates.

Accessible Microstates:
Only Microstates with total energy 3¢ are accessible in this

case. Here, there are 37371 = 10 different accessible
microstates.
Distributions:

A distribution is a string {ny, n, n,, ... }, in which n; the
number of atoms with energy ie characterizes. In this case,
there are the following three distributions possible:
d,:{0,3,0,0,0,0 ...}, including one microstate.
d,:{2,0,0,1,0,0 ...}, including three microstates.
d;:{1,1,1,0,0,0 ... }, including six microstates.
Constraints as formulas:
N=Yin, E=X&n

Macrostates:
Tupel (E,V, N).

Divide problem: W(E,V,N) = Y, w(d;) with
wd)=2=1  wld)=5-=3 wld)=1-=6

! 211! 11111
(numerator: number of particles; denominator: distribution)

Postulate: In isolated systems equilibrium, all microstates are
equally probable.

2.2 Phase Space Py

mw? Ey

x“.
2

Phase space is the space (x, p,), in which the

allowed states are defined by E. This yields an ellipse.

Particle in 3D = 6D phase space.

N particles in 3D = 6N dimensions, each point defines one
microstate. For conservative forces, E is constant and defines a
6N — 1 dimensional hypersurface. In an infinite time, each point
of this surface is reached by the system. Therefore, for a
measurable quantity A

(A) = %fOTdt At) = ZpiAi = %Z A;

Here, p; is the probability of the system to be in state i. Since all
p; are equal, the last step follows.

In general, for a system HY ({7}, {5:}) = EY({7}, (B:)),
W(E,V,N) is the degeneracy of the energy E in the sense of
Quantum Mechanics.

2
1D harmonic oscillator: E = :—7’; +

=




3 Microcanonical Ensemble

3.1 Sackur-Tetrode-Equation

(Derivation for d dimensions: see 10.1).

Ideal gas: H = ¥V, p?/2m. The number of microstates W the
should be proportional to the hypersurface on which the states
have an energy E:

W= Al_[fd3 J-d3pl< l: p‘)

A = 1/N! k3N gives correct answers:
1/N! eliminates over-counting of states (particles are indist.)
1/h3" gives correct dimension and makes some sense
because of the uncertainty principle AxAp,~h
Using [T, [ d3r; = VP, the integral simplifies to

5 pl
N'h3N1_Ud Pi ( 2m>

Using sphere coordinates and knowing the surface ofaD-

dimensional sphere is 2r°~*z?/2 /(D/2 — 1)}, it follows (r = 1)
3N

VN 21.[7 co pZ

= Wl dp§|E———

N!hSN(ﬂ_l).fo P ( 2m)
N_),

Delta functions are transformed as:d(g (x)) =Y, Ingx-)l 6(x —x;)

with x; being the zeros of g. Therefore:

3N
|74 2m2
W=N!h3N f p3N 1dp\/:6(p+\/ )
(7
3N
VN 2mz ) 3NVN 2rmE
= m
NUh3N (3N mE T 2N!h3N
(7 -1)! (7 e
Using In x! = x In x — x, it follows
S=klnW
V2TmE" 3N
=NkIn|V——F |+ kln(—) — NkIn(N) + Nk
h3 2E
i 3Nl (3N) k 3N
2 "\ 2

- Nkln(Z(ME v kin(CY) 42 vk
n (3nh2N) + “(25)+E

Because the second In-Term is only ~In N, whereas the others
are at least ~N, it can be ignored:

S = Nkl V( mE )3/2 2Nk
"N Grren 2

Now calculate:

1 _0S 3Nk —31va
T O0E 2E )
p_ aS Nk V = NkT
- =3 =

T WV p

Obviously, S is extensive: S(AE, AV, AN) = AS(E,V,N)

3.2 De Broglie Thermal Wavelength
What happens, if S < 0?7 That’s possible if
V, mE \*? V(VZmmkT\
N(3nh21v) - N( h ) <1
de Broglie thermal wavelength: A,;, == h/v2mrmkT (which is
related to de Broglie matter wavelength A = h/p and p?/2m =
kT = A= h/V2mkT).lItfollows 3/V/N > A,,: Wavelength
smaller than atom-distance.

E—3NIT
,E s

3.3 Statistical Mechanics Definition of Temperature
Assume isolated system E, V, N with two subsystems, which can
only exchange energy (E;, E, not fixed). Then, possible
configurations (E;, E,) of energy are:

(0,E) (B, E — Ey) - (Ey, E — Ey) -
Corresponding number of microstates:

(E,0)

W1 (0)W,(E) -+ Wy (E )W (E — Ey) - Wy (EDW,(E — E;)
) W EW,(0)
Let E; be chosen such that W, (E; )W, (E — E,) is the biggest (so
dominating) term. Hence, the function f = ln(Wl(El)W2 (EZ))
has a maximum at E; = E;. Therefore: E. —E—E
2 = 1
zi zalnwl +61nW2 E,=E—F,
_0lnW; OE,0lnW,  dInW,; dInW,

From thermodynamics is known, that in equilibrium,
temperatures are equal. Therefore, the definition d InW /0E =
1/kT makes sence:

1

= T, =T
kT, kT, 1z

3.4 Direction of Time

Let there now be a constrained to the states, such that the one
with E; (the equilibrium state) is forbidden. If the constrained is
removed, energy will be exchanged between the subsystems. At
equilibrium, more microstates are accessible, therefore

d
0<—ln(W1(E1)W2(E2))— 1n(W1(E1))+ ln(Wz(EZ))

dE1 d d
a0t dE, ln(Wl(El))+ dt iL, —In(W,(E,))
dE1 d dE;, d

dt dE, ln(W1(E1)) dt dE, ln(Wz(Ez))

_dE; < 1 )
T odt \kT, sz

Therefore, T, > Tl, 1 > 0 and the other way around.




4 FD-/BE-/MB-Distribution

4.1 Fermi-Dirac-Distribution
All three distribution are true for non-interacting particles;
hence the total Hamiltonian H is a sum of the single particle
Hamiltonias h;: H = }; h;. So solve the single particle problem
first and get the possible energies ¢;.
Since for big systems (electron/fermi gas), the energy levels are
very dense, it is convenient to group them together into cells,
where g, is the number of energy levels grouped into the r-th
cell, n, are the number of particles within this cell and ¢, is the
average energy (representing the included dense energy levels).
The constraints are now
Xrn, =N Yrny€r =E
A distribution now is referred to the groups: {n,, n,, ...
and the number of microstates is
W = Z W ({n;}) = W(most probable distr.) = W,
{ni}
To find W,,,,, one has to maximize W ({n,}) using Lagrange
multipliers. What is W ({n,.})? Within the r-th cell, there are n,.
occupying g, single particle states: n, states are occupied by one
fermion, g, — n, are not occupied (Pauli principle!). Number of
ways to arrange that: g,.!/(n,! (g, — n,)!). Hence:

g:!
W({nr}) B nnr! (gr - nr)!

= InW{n,}) = Z(gr Ing, —n,Inn, — (g,

My}

- nr) ln(gr - nr))

Now, for the most probable distribution, a change in n,.,
symbolized by dn, should vanish:

SInw({n,}) = Z(—Snr Inn, — én, + én, In(g, — n,) + én,)

p
-n
= In (gr T) on, - 0
nT
p

Somehow, here was taken the derivative § /6n, and then put én,
on the other side. Like this, you get the change of In W in all
possible ways of changing én,. Now, the constrictions come in:
Yon.=N = a),én.=0

Yrnper=E = BY.éne =0
That is to say, the sum of changes 6n,. must be zero, to maintain
the constant N and likewise for the energy. a and f are Lagrange
multipliers. Plugging this in yields:

Z (ln(g) +a +ﬂer) on, = 0

T

Since this must be true for any change dn,., it must be true that:
(gr — Ny n, 1
In
nT

) +a+ BET =0 (=4 E = m
Here, the Lagrange multiplier turn outto be § = —1/kT and @ =
u/KkT:

ny 1
fro(€) = g_ T eE-m /KTy 1

frp is the average number of fermions per single-particle state at
energy €,. From that, those formulas follow:

N = Z rfrp(€;) = frp(€:)

all single
particle states i

E= Z €-9rfrp(€r) = &rfrn(€)

all single
particle states i

Obviously, S is extensive: S(AE, AV, AN) = AS(E,V,N)

4.2 Bose-Einstein-Distribution
The only difference for Bosons is, that there are no constrictions
on occupying the states. So, within the r-th cell, the n, particles
can be distributed in all possible ways on the g, states. Hecce:
_ (gr t+n, — 1)! (gr + nr)!

W(n,)) = , Ape T
nr-(gr_l)- Ny: Gr-
Since the maximum of W ({n,.}) is the same as of In W ({n,.}):

In W({nr}) = Z((gr + nr) ln(gr + nr) - Ny In Ny — gr In gr)

=§§InW{n,}) = Z(6nr In(g, +n,) —én,Inn,)

.
+n +n |

=Zlngr T5nT=Z(lnb+a+ﬁer>6nr=0
n, n,

T T

In the last step, again, the restrictions a Y, 6n, = 0 and

B Y., 6n,€, = 0 were used. In the same way as for the Fermi-

Dirac-Distribution, the bracket term is set to zero:

gr+nr _ Tlr_ 1
In +a+ﬁET=0 =14 fBE(er) -——T—m

r

Here, the Lagrange multiplier turn outtobe f§ = —1/kT and a =

w/kT:
1

e(er—)/kT — 1

ny
fee(€r) = a =

Since fgg = n,/g, should be positive, it follows e, > p.

4.3 Maxwell-Boltzmann-Distribution
Allparticles are either Fermions or Bosons. What, then, does one
mean by “classical” particles?
For classical particles is g, > n,., since the states are continuous.
gr!
Wi ({n,) ]_[ T
ny terms

=

gr>ny n,!
r

=1—[gr(9r—1)---(gr—nr+1) 5 g

(gr +ny)!
Wes((n,) ~ 1_[ "
n.!g,!
n, terms
(gr+nr)(gr+nr_1)"'(gr+1) - g;lr
nr! gr;nr Tlr!
r

Hence, in the classical limit, the difference between Bosons und
Fermions becomes ignorable. Consider now Wy ({n,}) =
[1, 9,7 /n,! and find the maximum of In Wj,:

InWyp = Z(nr Ing, —n,Inn, +n,)
T

= §lnWyg = Z(&nr Ing, — én,.Inn, —én, + én,)

=S (&) n, =3 (n(2) 4 e )om L0

In the last step was as usual used, that a Y, n,, = 0 and
B Y. 6n,.€, = 0. Further:

n
ln(g)+a+,86r—0 & — =e%efer
n 9r

Now, also a can be determined (f turns again out to be —1/kT):

N = an — Zgreae—er/kT = @ z gre—sr/kT
T r cellsr
3

states i

This, actually, is quite physically:

e~/ =% &  e*=N/z

€r

n, e kT
fup(€r) = g_ = NT = NP(e,)

r




4.4 Density of States
For a continuous problem, g, becomes the density of single
particle states g(¢). This yields:

=Y gfee = [deg@er@,  N= [ deg@er

Here, f could be fgp, fgr Or fyg- In the particle in a box-problem
(free particles with boundary condition), the states are equally
spaced in k-space, namely like k; = n;m /L. The density of state is
therefore D; = G,V /(2m)?, where G, is the spin-degeneracy and
d symbolizes the dimension of the problem.

Therefore, it is convenient to evaluate Dyd%k = g4, (€)de (ind
dimensions). If the dispersion relation is € = ak?, with some

power p € R, then:
d-p

DS DaSa 16\ 5"
L arde = —1(=) 7 de
pa pa \a

Here, S, is the surface area of an d-dimensional sphere with
radius 1. Hence, the density of states in energy is

D;S; 4=

pad/p

For the most common cases,p = 2,« = h?/2mand D =
G,V /(2m)3, this yields (in 1D, V is an length, in 2d an area):
g(e)

Ddddk = Ddekd_ldk =

g(e) =

|4

D;S; 1-=2 (GS ﬁ) 2 172 _ GV (2m v -1/2
2012 T aan € =ﬁ(?) 4=1

2(zm)

Gy s ) - 2
D,S, 22 \"my) " _mGV 2
= 2q22€ 72 \?/? 2mh? B
2(zm)

(G L) 41T 3/2
DsSs 32 _\P@m) " i GV 2m €2, d=3
2q3/? K2 3/2 42\ h

(zm)

Formula for volume V; and surface area S, of d-dimensional

sphere with radius R:

d d
4/ d S =%=2n/2 d-1
’ 47 9R T T(d/2)

']] -
‘ %F(d/z)

4.5 Density of States and the Distribution-Functions
Accepting, that § = 1/kT, the equation

N= gf(e) = f “de g(Of(©) = f “de g(Of ©)

determines u(T).For T = 0, frp is a step dropping at u and the
area beneath g up to u is N. For higher temperatures, N must be
constant, so the blue and green areas must have the same size.
To achieve this, u(T) < u(0).

T>0

4.6 Maxwell’s Distribution of Speeds
The distribution n(v) can be derived using the density of states.
But since n(v) is a particle density, the number of particles in

the states have to be multiplied:
N —Bh%k2/2m 3
n(w)dv = D(k)d3k———— = (—) Amk?dk
z 21
Using v = p/m = hk/m yields (using L3 = V):
L3 mv\2m  Ne Bmv?/2
n(v)dv = (—) 47 (—) —dy———

21 h h z
e—ﬁmvz/z

—Bh%Kk2/2m

VA

ANV my3

= n)= @ (%) v 1
(2mh)3

ms3 e_ﬁmvz/z
= 4mh’N () v? -

h (f dpx e—Bp,ZC/Zm)

e—Pmv?/2 4rmB3v?
= 4nrNm3v? =N
ey (2mmkT)3/2 (2mmkT)3/2
Of course, the same can be achieved using the energy relation
—Be
e

[ d3x[ d3p e=-Bp?/2m

—mv2/2kT

de

n()dv = n(e)de = Ng(e)

with e = m/2 v?.

VA




5 Canonical Ensemble

5.1 Partition Function
Consider an isolated system with two subsystems, which can
only exchange energy. Let now be subsystem 1 = heat bath and
subsystem 2 = system with (Eg, Vg, N5, Tg) and (E,V, N, T) with
fixed volumes and particle numbers and fixed total energy E, =
Eg + E. Moreover is the bath so big, that Tz = T after a long time
(Tg fixed). Possible configurations (E, Eg):
(0,Ey) -+ (Ey, Eo — E;) =+ (E,E — E) -~
Corresponding number of microstates:
WS(O)WB(EO) WS(EL')WB(EO - Ei)
= Ws(Eo)W5(0)
Probability of energy level E = E; (W = total number of mircos.)

WSO Wa By — E)

(EO' 0)

Ws(EYWg(E, — E)

PE) =

But there are several mlcrostates Ws(E;), which is the
degeneracy of that energy E;. Therefore, the probability of one
state with E; is:

1
P(E;) = WWB(EO — E)~Wg(E, — E;)
To calculate Wp, consider Taylor expansion at Ej:
dInWg(E)
InWg(Ey — E;) = InWg(Ep) + —E (Ey — E; — Ep)
Eo
0’InWg 09%2S o9 1 1
N~ ——~— <1
92E  0E?2 OETy Cg
(heat capacity of bath is huge, so ignore second order)

e In Wy (E,) —

= P(E;) ~Wp(Ey — E;) ~ e_E‘/kT

Since P(E;) is a probability, it must be normalized:
-1

1
1= z —E;/kT =y - Z —E;/kT —
ce c e Z(T, V, N)

all all
states states

Note, that E; = E;(V,N)

1
= ln WB(E()) k

5.2 Energy Distribution 1
Mean energy (each index i represents one state): a

E; 10 1907
E =25.p E, =Z_l pp - _LON pp_ _10Z
= BPEI= ) 7 = "70p.L.° 798
3 i
4 4 of _ofor of
e 2 __ B 291
aﬂlnz kT aTan R arar - T ar

Standard derivation:

2 2
(E?) = z E2P(E,) = _a_z p-pEi = 1072

Z 032 Z 0p?
190%Z aZ\* a4 (10Z A(E)
= ok =) -0 = 350 7 (ap) =3 z3p) = 3p
_kT2a< >—kT2C
oT v

Since Cy is extensive, o2 is also extensive, hence 6Z~N, cZ~VN.

The shape is of course Gaussian ~e~E~(EV?/20%

5.3 Connection to Thermodynamics

In contrast to W = W(E,V, N), for the partition function Z =
Z(T,V,N) is true, due to the heat bath with constant
temperature T. Those are the natural variables of the Helmholtz
free energy:

F=E-TS = dF =dE—TdS —SdT = —=SdT — pdV + udN
Furthermore {E) = kT? 0/0T In Z was found. There should be
also something like E = kT2 0/0T X in thermodynamics. What is

X? Consider:

d(F)—ldF FdT—l( SdT — pdV + udN) FdT
) =1 "% T pav T i T?
1 p U E 14 u
——(ST+ F)dT —=dV + =dN = ——dT — =dV + —=dN
TZ( +F) Tt T2 T T
So, obviously:
dF _E - TzdF sza F)
arr. T2 < T _(__

arT " T\ kT
Hence F = —kTInZ.

5.4 Connection to Quantum Mechanics

Z= Z _BEL—Z i|Ze ‘BH|) Trace(H)

_Hll

The trace of a matrix is always independent from the chosen
basis |i).

5.5 Qualitative Description

Consider again
1
PE) = 37 Ws(EQW5 (B — E)~Ws(Ee#t/kT

In a closed system, the energy is not fixed and therefore not all
the (micro-)states are equally probable. States with high energy
are less probably (e Fi/kKT), however, the number of degenerated
states increases with energy (Ws(E;)). Therefore there is a sharp

mean (E) with small fluctuations.

5.6 Example I: Classical Ideal Gas
The partition function of an classical ideal gas is given by
integrals instead of sums with H = ¥, pZ/2m:

N'h3Nfd3x1 fd3fod3p1 fd py e PH

fd3p e Fp /2m) =—z

TN h3N
The single particle partition function is

N!

14 ~ 14 oo NSV 2mmy 3/
2= s | dpetim = o[ apeemrim) = ()
_V<\/21kaT)3 v
h 23,
MR AAY F=—kTInZ
—3 = —=—| — = = —
N NI\A, !
dF  NkT (B = 0., 3NkT
—4 == — —_— = —
P="w =y B "

5.7 Equipartition Theorem
Let the Hamilton be H({X;, p;}) = aq? + [Other]. Here, q is any
xj;-coordinate (e.g. x, 5, the y-coordiante of the 5% particle) and
“[Other]” are any other terms independent of gq. Then, the
contribution of the ag?-term to the energy is:
[dq [ d[Other] ag? e=Paa*g=BlOther] [ gq qq2 =Pad®
qu [ d[Other] e-Baa*e-BlOther] [ gq o—Baq?

0 1
=——1n J- dqe‘ﬁ“q =——1In 7T——kT
B aB 2

Hence, every quadratic term in the Hamiltonian contributes
kT /2 to the energy. This is even true for terms like x, 5p; ;.




5.8 Example ll: Two-level systems

Consider N distinguishable particles, all of which can access only
two energy levels (those levels might differ from particle to
particle) with the energies €;; (lower level, i-th particle) and €,;
(upper level, i-th particle). Define a state via the energy values of
each particle: {€,, ..., ey}, €; € {€;;, €4;}. There are 2V different
states. Total energy: E({¢;}) = Zl(vi=1) €;. Partition function:

Z:Ze—ﬁE({ei})z Z Z e BIN &

all €1=€11,€u1  EN=EINE€uN
states
N
:|| E e_ﬁeizllzi
i=1 €;=€1,€yi i=1

Here, z; is the partition function of a single particle.
(oo}

— F=—kTInZ= —kTZlnzi
i=1
Simplest case: All particles have the same energy levels:
€; =€ =—€/2and €,; = €, = €/2. This yields Z = z" and
7 = e—ﬁe/z + eﬁe/z
For one particle let the probability to have a Energy ¢ be P(¢):
= P(—¢/2) =eP/2)y P(e/2) = e PFe/2 )z

Note P(—€/2) > P(e/2).
Low temperature case: fe/2 > 1 = z ~ eF¢/?

= P(—€/2) =1 P(e/2) =0
Hight temperature case: fe/2 K 1 =z~ e® +e° =2

= P(—€/2)=1/2 P(e/2) = 1/2

Mean energy:

Be _Be
E_elﬁT el_%_ €ez —e 2 he
(B)=—5 e 4577 = 5 = —gtanh (5;7)
ez +e 2

5.9 Example lll: Paramagnetism
Magnetisation of a material: M = yH

= B =pg(H+M)=p,(1+)H = puouH
But experimental one finds y = y(T) ~ 1/T (Pierre Curie’s Law)
Can one find this behavior using statistical mechanics?
Assumption: Solid, array of N magnetic moments, independent,
distinguishable (Z = z"). In general is i = — %f (J is angular
momentum, g is Landé factor), in this case consider the spin
with g = 2 and j = §. The energy of a particle within a magnetic
field B = B8, is

= e eh

E=—-uB=—-u,B = EBSZ = HBmS = 2ugBm; = *ugB
(pg is Bohr magneton). The partition function is therefore
7 = ePuBB 4 o—BuBB

which yields the following mean (note that p, ~ — s,):

eBMBB — e_B#BB

= BugB /, _ “BupB jy — .~
(uz) = ppePts"/z — pge /2= M gus o PrnB

tgB
= s tanh ()
up tanh (==
N N (5B
= M =1} =7 pg tanh (F)

For room temperature is kT > upB (using B = 1 T). Therefore,
using tanh x = x, x < 1 yields (Paramagnetism: p, = 1):

_ﬁ;ié_3~ﬁu§uoHi 0o _Nuguo 1
VR VT X A=V Thr T
Mean energy (one atom):
eBuBB e BupB
(E) = —ugB + upB = —ugB tanh(BuzB)

z
(This is also the solution of (E) = —3/d8 In 2)

If we want to consider not only the spin but a general J, a one
particle system has access to 2j + 1 states (—j < m; < j) with

. , h i
energiesE = —u,B = %]ZB = %ij = gugm;B Partition
function:

7 = £nj=_je-ﬁg#33mj

Using ¥N_ox™ = (1 — xV*1) /(1 — x) yields with x = e PIHBE:
; ; ‘ ; .

J J J 1 m; J
2= QA= ) ) et ) () ) am
m]-:—j 1 m]'=0 mj=0

m;= mj=0
j+1
1— (1) 1—xJtl  xm =yt oy — gy
-1+ —% 4 = =
1 1—x 1—x 1—e /]

1-—=
X
1—e-@+0y/j  Qj+Dy/2j 1 _ o=Qj+Dy/j

=eY - - -
1—e /i e¥/2j 1—e Y/

3 e@i+Dy/2j _ o=(2j+1)y/2]) — sinh 2j+1 - y
B eY/2] — g=y/2] - s (Z—jy)/sm (2_]>

In the end, y = BgugjB was used, so that x = e/,
Note, that the above equation for (u,) = ugef*s /7 —

pgePHBB /7 can also be achieved with

1 0z a 1 0F
(”z) = %G_B = a_BlenZ = _Na_B
In the last step, the Helholtz-Free-Energy F = —kTInZ =
—NkT In z was used. Now, the magnetization M is

wo Ny _LoF _NKT O
Sy =TyesT v e Y
NKT 0

=g (3 (%5 /o (3)
= V OB ni|sm 2] y Sin 2]

Ngugj (2j +1 2j+1 1
= g,uB](]. coth(]_ y)——_coth(zlj))

%4 2j 2j 2j
Ngpgj
=— B

Here, B;(y) is the Brillouin function.




5.10 Example IV: Classical Langevin Theory of

Paramagnetism
Classically, the directions of the magnetic momentums are not
quantized: Is has to be described using angles 6, € {0, 7} and

¢; € {0,27} for the i-th particle. The energy for B = B8, is then:
E; = —ji;B = —uB cos 6;

A state is described by {6;, ¢4, ..., Oy, @x}. The sum over all states

becomes an integral:

J-d.Ql fd.QNe BuB I cos6; _ n_fdﬂ e—BuB cos6;

27

T
4r
f f ddf sinf e PuBcost | — (— smh(,[s’uB))
0 0

N

puB

=zN

The magnetization is, again (using y = SuB):

oy (LOF N9 N al<4 h)
=y W) = —yag T ypag N2 T ygPrgyn g sinhy

Nu 1\ Nu . .
=— (cothy — —) =—1L(y) L(y) — Langevin function
vV y vV
Fory = uB/kT « 1, Curie’s Law can be derived again.

5.11 Example V: Harmonic Oscillators
For N harmonic oscillators, the partition function is:

N
=3 3 o) []5 o).
i=1

1=0 ny=0 i=1 n;=
The Helmholtz Free Energy is: F = —kT an =—kTYN ,Inz

Now, focus on just one partlcle (use Zn ox"=1/(1 —x)):
-Bhw/2

_ ﬁhw n+ _ -pe —ghon _ €
i= Z Sy e =

n=0
Further, the mean energy is
hw hwe Phe 1 1
(E) = ——ﬁlnz 7+ 1~ oo = hw (eﬁh‘" 1 +§)
For kT » hw, ef" ~ 1 + fhw yields (E) ~ hw/2 + kT ~ kT.
Hence, the mean excitation is

1
(n) = ohho _ 1
Heat Capacity:
AE) 0 hw hw\?  ehw/kT hw
T 9T T eho/kT —1 (_) (eror —1y2 ~ KE (kT)

Here, E(x) = x2e*/(e* — 1)? is the Einstein function.
For low temperature Aw/kT > 1:

ke e™RT > 0
~ k— -
kT
For high temperature hw/kT < 1

eh“’/kT ~1—hw/kT

k (h ) ! =k ticle!
=] ~ _—_— !
hao JKT)? (one particle!)



6 Heat Capacity of Solids

6.1 Einstein’s Model (1907)
Assumptions:
N atoms form 3N harmonic oscillators in a 3-dimensional solid.
All oscillators have the same frequency wg.
Then, the heat capacity is (see 5.11):
ehwE/KT eOE/T

¢= Z ( )(eh“’E/kf—l)Z 3N"<95) (/T 1)

Here, 05 = hwg/k is called the Einstein temperature. This was
the most accurate theory at this time, but for low temperatures,
it drops too rapidly.

6.2 Debye’s Model (1912)

In Debye’s model, the frequencies of the oscillators are not the
same. Since all the N atoms in the lattice are coupled by
“springs”, they have different normal modes (like two particles
with one spring connected have two modes, three have three
modes etc.). The normal modes are still independent, so it is
possible to sum them up to get the energy:

E= Z haoy ( eh‘"t/"T - 1)

For many particles, w; forms approximately a continuum with a
density D(w) and E becomes:

0 1 1
E=| doDh (—+7)
|| a0 0@ ho 5+ g

It is found, that for small w, D (w) goes like w?. Hence, Debye
assumes D(w) = Aw? 8(w — wp), which implies the condition

® @D | 9N
f d(uD(w)=Af dow?*=3N & A=—
0 0 Wp

Now, the energy becomes:
wp

1 1
E = dew hw( m)

wp wp 3
dw w® + Ah dw
0

kT)4 j‘h“’D/kT x3  kT«hwp 9
X
0

eha)/kT -1

=§thD+Ah(7 1 ~ §Nfle

x3 9Nm*h (kT\*

+Ah fdx _1_—thD — (h)
Now, the heat capacity goes like C = dE /0T ~T?3 w1th fulfills the
experimental results.
Physically speaking, in the Einstein model, e"“£/T declines
suddenly, when Awg « kT.Butin Debye model, there are
different w’s, also bigger ones than wg. And those prevent the
heat capacity to drop so fast.




/ Interacting Systems

7.1 Partition Function of Non-ldeal Gas

Assume potential of shape like the Lennard-Jones potential.
Then, the Hamiltonian is

N
H{ZAD = ) o+ W(ED,  WED = ) V(|7 - 3)).
i=1 i>j
Here, U(|%; — %|) = U(x;;) might be the Lennard-Jones
potential. Use for simplicity [ Dx == [ d3x; - [ d3xy:

1
_ —BH
Z‘N!h”fDfope

VN N B 1
_ —pyN B 1 _
_N!h3Npoe 12mVNfDxeﬂW
=Zideal=Zi
4 i>j  =ltA
= o [ Pr A A 2 (1 )+ )
Z; X
i>]
1 N(N—-1)
= Z; 1+WZIDXAij =7 1+WJ‘DX'112
i>)
N(N -1
=7 (1 + %VN_ZJ- d3x; d3x, /112)

Q

N? N?
ZL' (1 + Z—VZJI d3R d3r AlZ) = Zi <1 + ﬁf d3r A(T))
N

~ N[ aram) = ")
~zi(1+ﬁ r (r)) _zi<1+§1(ﬁ))

Here, the center of mass coordinates R and relative coordinates
7 have been introduced. The step in the end can be done, since
1+ ax = (1 + x)%, if x is small. Further more, n = N/V and

I(B) = f d3*r A(r) = 47Tfoodr r2 (e=PU®M — 1)
0

was used. Now it is possible, to calculate the Helmholtz free
energy and other quantities:

n
F=—kTInZ = —kTInZ; — NkT In (1 + E1([;))

~ —kTInZ — NkTgI(ﬁ)

oF NkT+NkT1( ) ] (N) NkT <N>2 kTI( )
—2 = = — _ —_— =] = — — | — _
P=~"w ™= v R TAV AT v) 716
@ﬁzn—ll(ﬂ)nz
kT 2

The prefectors of an expansion B, (T)n + B,(T)n? + --- are
called “Virial coefficients”. Hence:

1 o)
B,(T) = —EI(T) = —21‘[[ dr r? (e—ﬁU(r) _ 1)
0

7.2  The Van-der-Waals-Equation of State
Now, consider:

. 0, r<r,
U(r) - {—UOT(T/TC): else

F being an arbitrary function.
Tc

= B(T)=2n| drr?®- ZTIJ. dr r2(eUoF/mI/kT — 1)
0 Tc

!

2, 2nU,
~~ - —
KT»UsF 3 € kT
=b'—a'/kT
Here, b’ is four times the volume of one atom (leading to
repulsion) and a’ is a constant for the attraction.
Using N/V = N,/V,V being the volume of one mole, yields:
N a\N? N N? a' N}
PN (N M M 4
kT V kT)VZ2 v vz kT V?
_NA(1+b) al N, 1 a 1
- v) kTVZ" VvV _b kTV?
v
1 a Ny a
Here, b := b'N, and a := a’N? were used.

© 4T 1\3 a
2 _ (o
frc drr .’F(r/rc)—4—3( )

2

kT

7.3  The Critical Point

At the critical point is true that g U™ scher
ap 9%*p _ 5 =
v vz
Hence: T,
RT a S

Py '

ap RT _ 2a ‘
> =4 — =

(?V (V - b)2 V3 %/"’779,7 Tripelpunkt

& 2a(V - b)? = RTV? i)
d2%p 2RT 6a

=0 o 6a(V—b)3 =2RTV*

=S — =
vz (Vv -bh)3 v4

Dividing those equations yields:
3W-b)=2V < V.=3b

8a a
= TRy PeT o
Furthermore, for any gas must be universally true:
pcVe 3
RT, 8

Moreover, a = 3V?p. and b = V,/3 and hence:
V2 V,
p+3p617 (V—?)=RT
p VAV 1 RT T. 8T
o (Z+3)(5-3) =opr=57
pc  V2)\V 3/ pVT. 3T;
Defining pg = p/p. etc. yields:

3
(pR + _2> BV — 1) = 8T
Vi




7.4 The Ising-Model for Ferromagnetism

Hamilton for Paramagnetism (see 5.9) for N particles:
N

Hyara = — ppBy Z Si
=B i=1
Here, s; is +1 or —1. Ferromagnetism: Interaction between
nearest neighbors with J > 0:

N
errro =H-= _]Zsisj - BZSi
1

(ij) i=
(ij) means, summing only over nearest neighbors.
Mean Field Theory: Each nearest neighbor k has an average
value of (s, ), which is the same for every atom, hence
independent of k: m := (s;). Hence, z being the number of
nearest neighbors:

N N N
H = —]szsi —BZsi = —(]zm+B)Zsi
i=1 i=1 i=1

Now, H has the same form as Hp,.,! Using the solution from 5.9:

(1) (]zm + B)
=m =tanh(———

HUp kT

Consider B = 0, will there be spontaneous magnetization?
4 h(]zm)_t hx) _kT
m = tan T = tanh(x), m—jzx

Now, the intersections between m T>T. .
tanh x and the straight line are : . N
solutions. The slope of T r tanhx
tanhx atx = 0is 1, hence P < e >
kT, Jz x
—=leT.=—
Jz ¢k =4

Behavior of m(T) at T:

m
m = tanh (Em) ~ Em - 1<E)3 m3
T T 3\T .
Form # 0: T, >T
3
1~ E_E(E) m?
3T?2 3 1/2
F(TC_T) S + F(TC_T)~(TC_T)
c T~T, c

Behavior of B(m) atisotherm T = T:

B B 1 B3
m=tanh(m+—) zm+———(m+—)

kT, kT, 3 kT,
B m? +m23+m32 N B3
o —x —
kT, 3 kT, =~ kT,  Kk2T3

Since in the leading term, B ~ m3, the other terms are ~ m5,

~m’ and ~ m? and can be ignored:

kT,

B~—m?3
3 m

7.5 More formal Approach on the Ising-Model

Again, m is the average value of s;, let's assume, the difference

Sk — mis small:
N

H=—]Zsisj—BZsi

) i=1
N

=—]Z(si—m+m)(sj—m+m)—BZsi

) i=1

~ —]Z((si —m)m+(sj—m)m+m2)—BZsi
(i) i=1
= —]Z((si+sj)m—m2)—BZsi

(i)) i
N
i=

=1
= —2m]25i+]m221—325i

(ij) (i) 1

N N

z

=—]szSi+]m27—B S;
- .

i=1

zN
—(Jzm + B)Zsl- +]m27
B

Now, the Partition Function is Z = z" with:

ePUZM*B)S = 2o=BIm*2/2 cosh(B(Jzm + B))
s=-1,1
Hence, the expected (average) m of this particle is:
e—ﬁ]mzz/zeﬁ(]zm+3) . e—ﬁ]mzz/Ze—ﬁ(]zm+B)

7 = e—ﬁ]mzz/z

m=+1-

Z VA
a2 )
e 7

Now, it is possible to find the Helmholtz free energy F =

—kT In Z and doing so yields, that there is a symmetry breaking
atT = T,; m = 0 is no minimum for T > T, and hence no
physical solution.




8 Grand Canonical Ensemble

8.1 Grand Partition Function

As for the Partition Function, consider a system inside a heat
bath, which is now also allowed to exchange particles (heat bath
becomes also a particle bath). Then, the probability, that the
systemhas N particles and the energy E;(N) is:

P(E;(N),N) = — E;(N),No — N) - Ws(E;(N),N)

Here, W is the total number of microstates, Wy the number of
microstates within the bath and Ws within the system. The total
energy and particle number is E, = Eg + E;(N) and Ny = N +
N. Then, the probability of a state with energy E;(N) is:

— E;(N),No —N)

1
WWB(EO

PEEN),N) = o W Es

Consider a Taylor expansion at Ez = E, — E;(N) =~ E, and Ny =
Ny —N = N:

In(W5(Ey — E;(N), Ny — N))
~ In(W, (Eo, Np)) + %gs.%) (Eo — Ei(N) — Eo)
E N
ONg Ep=No
T80
= In(Wg(Eo, Ny)) — Elk(qu) kT

Here, Sy = kIn Wy and Wy /0Eg = Tg and Wy /0Ny = —u/T
was used. This yields:
Wg(Ey — E;(N),Ny — N) ~ e PE(N) BN
e ~BEi(N) o BuN
QT V1)
P is called the Gibbs or Grand Canonical Distribution and Q is the
Grand Partition Function:

Ng~o

Q(T,V,u) =

N=0 N particle
states i

= P(E;(N),N) =

e ~BEi(N) o BuN

8.2 Particle Number and Energy Distribution

Mean particle number:
o

100 19
(V) = N P(Ei(N),N) = ZnQ
I;Np;icle ﬂQ 6/1 ,8 ou
states i
- _1.9%Q 1 (3Qy?
(@NY) = V= " = = o ()
10 /10Q _16(N)
~Foalga) "5 on

Since (N) is the only extensive quantity in this expression,
((AN)?) ~ (N). Hence, the standard deviation is ¢ ~ v/N and

a/(N) ~ 1/,/{N)
Mean Energy:

a N ,—BE;(N) _ _
550 = Q;(MN—Ei(N))eBH e~PE) = J(N) — (E)

d
= p(N) ——an

< (E) 3F

8.3 Connection to Thermodynamics

Consider:
8( an) —InQ — ——an
ap\ p B? Baop .
o (E)— u(N) = — ﬁan B /3( Ean)_l_?an
= (E)—M(N)+Tﬁ(—kT1nQ)=—lenQ

In thermodynamics, the Grand Potential is given by
Q=FE—uN-—-TS =—-pV
which yields dQ) = —SdT — pdV — Ndu and hence:

0=f—uv+172
# aT

So, obviously is
Q(T,V,u) = —kTInQ(T,V,un)
And furthermore, if one plugsin E = TS — pV + uN:
Q=E—-TS—uN =—pV =—kTInQ

144
= T =1InQ

8.4 Classical Ideal Gas
From 5.6 is known, that the partition function is

N
Z
_N osmm 2
Z‘Ze ST
L

with z = V /A3, and A, = h/v2rmkT. Hence:

0= ZZ ~BE{(N) pBUN — ZZ(N)eB“N Z(zeﬁﬂ)

= Exp(zeﬁf‘)
Hence, the Grand Potential is:
O =—kTInQ = —zkTeP* = —yV (kT)5/2e#/¥T
with y = (2rm/h)3/2. Furthermore, the ideal gas law follows:

e N

av
d a0
(N) = kTaan =" zeH/*T = yV (kT)3/2eH/KT
p kT

As well as the internal energy:

d 3z
(E) = M<N>__,BIHQ yze”/"T+§EeB”—uzeﬁ“

3
= uzet/kT 4 Esze”/kT — pzeM kT = E(N)kT
Finally, the entropy is just the Sackur-Tetrode-Equation:

GJ)
S=-25=VW5s (kT)S/ze"/kT

oT
u
— = 3/2 ,u/kT _ 5/2 u/kT
yv (2 k(kT)3/ e (kT) T2 e )
5 5
=yV (Ek - %) (KT)3/2eH/KT = k(N — E(1v>

5 u 1
=Ek(N)_k<N>k_T=_k(N)+k(N)ln< H/kT)

5 4 4
= Ek(N) + k(N)In <—Z/1§he#/”> 5 k(N) + k(N)In ((NM >

(Y mkT >/ 5,
(N)n((N) <2ﬂh2) >+§ (V)




8.5 Bose-Einstein-/Fermi-Dirac-Distributon
Define for non-interacting Bosons/Fermions an inifite number
of single particle states with energies

€S €SS €S
Let the i-th state be occupied by n; particles, then one state can
be defined as a tupel (n,n,, ..., n;, ...), where };;n; = N is not
fixed. For Fermions: n; € {0,1}, for Bosons n; € N,. Now, Qg is
for Fermions, Qy for Bosons:

QFB = ZZ e_ﬁEl'(N)eﬁu'N = z e_ﬁEi(N)eﬂﬂN
N i

all possible
states
1,0 1,00
= . e_ﬁz;glniei e_ﬁ”2;21ni
ny=0ny=0
1,00 1,00 1,00 1,00
_ Z Z o eI (e mn — Z Z | | ~Ble-wm;
nl—OnZ 0 n1=0n,=0 i=
[ee) [oe]
| | Z -Blei—wn; — | |(1 + e~Blem)™
i=1 n;= i=1

(sum to 0 and + for Fermions, sum to o and — for Bosons)

= Qg5 = —KTInQrp = FAT Y In(1 £ e P ) 2 py

i=1
iz n(l + e Ble— #))
N had e —B(ei—u) i 1
= (N)= T LTt eFEm Z eBle-m + 1
i=1 i=1
= Z fFD,BE(EL)

For a certain (N), this equation determines the relation u(T). Of
cause, frp gr = 0, so for Bosons is y < €; Vi neccessaray. Since
€; = €; = 0, that means, the for Bosons u is typically negative.
Using the density of states in energy g(e), the sum can be
written as an integral:

(N) = f de 9(©) foppe(®)  (E) = f de g(€)e frp 5 (€)
0 0



9 The Ideal Quantum Gas

9.1 Formulas for this section
Recall the density of states from 4.4, where y is a constant,
depending on the dimensions d and the power of the dispersion
relation q:

g(e) €~ k1
Recall as well the integrals of the bottom of 8.5:

N = f de g(©) frops(€)  E = f de g()¢ frp 55 ()

= yeld-0/a = yed/a-1

9.2 Pressure-Volume-Energy Relation

From 8.3 is known, that pV /kT = In Q, where Q is the Grand
Partition Function. Recall Q for bosons/fermions from 8.5,
where the upper sign if for fermions, the lower for bosons:

pV = kTInQ = isz In(1 + e~Fle)

i=1

= ika de g(e) In(1 £ e Plemm)
0

= iyka de e?/a-1 ln(l + e—B(e—u))
0
Be~Blew

1+ e Ble-w

qa_(” 1 q
=— dee?/1—————=—F
dy_[) eBle-w+1 d
In the second last step, integration by parts was conducted.

= gyka de €¥/a
d 0

9.3 Zero Temperature Physics (Fermions)
For T = 0, u(T) = Eg, and f;, becomes a step function:

o0 ER
N=f0deg(e)fm(e)=fo de g(e) = TyEd/

q
dN a dN \d
o= (o) = ()

qv qvv
Laststep: Recally ~V = ¥ :=y/V.For the energy follows:

q
= Eg(EF)EF =

9] Er
Y d/q+1
E=f de g(€)e frp(e) = f dee¥1 =1
. ) frp Y . d/q+1°F
q
=——g(Ep)E: = ——NE
d+qg( 7)Ef d+q °F
Recall from 9.2:
q q
po9p 8 ¥ pajen 4V (dN )d“LlN(ﬁ)d“
PV =at T dd/q+1°F d(d + q) \q7V v

This is called the “degenerate pressure”.

9.4 Low Temperature Physics (Fermions)
For kT « Ep, the Sommerfeld expansion is valid:

e F(e) H w2 .-
f demzf de F(€) + = (kTY2F' ()
0 0
Hence:
_ (" g(€) 4 a/q m? 2,44 d/q-2
N—fo d6m~)’aﬂ +?(kT) VT#

— 9 asq ng a
=y H <1+ (kT) p u?
_ydgga(£) a/a 1+E_M(’<_T)Z
d"" \Eg 6 q* \pu
d/q 2d(d — q) (kT\?
=N(£) 1+H_M(_)
Ep 6 q° I

—q/d
n2d(d — q) (kT\?\ * n2d — q (kT\>
< “‘EF(”? e (7) ~E\lme T (Ep)

Last step is possible because (1 £ x)* = 1 + ax.

Next, calculate the energy (E, = E(T = 0) from 9.3):

g(e)e . 4/
Sy (et
ele—w) ele=W /kT 11 + 1 o e(e—W) /kT 4 1

d

~ d/q+1+ kT)? d/q-1

g+ 1" ( )]/q#

Yq  a/q+1 dtad
= 1+ — (kT)2———

d+q" 6( ) 7 q"
_ v Ed/q+1<i)d/q+1 1+_2d(d+q)(kT>
d+q F Ep 6 g2 U

=)
R G )
5 (1 +7%2<d(dq-2|- Q) d2q—2q2> (l;_:)z N 0((’;_2)")

n?d + q (kT w2
on(l L Tk ))=Eo+;g(Ep>(kT>2

q Ep
In the last step, E, = q/(d + q) g(Er)EZ from 9.3 was used.

9.5 Bose-Einstein Condensation (Bosons)

As stated in 8.5, i has to be bigger than the single particle energy
ground state €, which is typically close to zero. Hence, the
number of particles is

sz de
€o

That is to say, the density of states is somehow shifted, such that
g(e —€y) = 0,€ < €;. This equation defines the temperature
dependence of u = u(T). But for small T, u has to become
positive, such that this equation is fulfilled. Since it is not
allowed to be positive, for T < T, follows u = 0. But this would
lead to a lack of particles, the integral would be smaller than N.
Since the integral starts only at € = ¢, it misses the N, particles
in the ground state. For high temperature, Ny/N = 0. But for
lower temperatures, N, cannot be neglected anymore:

N=N0(T)+jwde gle—€p)

e(e-W/kT _ 1
Now,aslongasT > T, u < 0= Ny/N = 0.
First, calculate T:
Here, T - T,,u = 0and N,/N = 0, €5 = 0. Use the substitution

x = e
d/q -1
N = yf de —y(kT)d/qf de

=lqq
o (N )"
= =|—
¢ yldq

But attention! The integral I, converges only ford/q > 1,

g(€e — €)
eI/ 1

d/q 1

hence only in those cases is the Bose-Einstein condensation
possible! In other cases, there is no Bose-Einstein condensation,
or T, = 0, if one still wishes to speak about T,.

Next, calculate N (T):

ForT < T, still u = O is true:
d/q 1 TT. d/q

[
=g = MM+ () g
d/q

= No(T) + N (TZ) o Ny(T)=N (1 - (Tzc)d/q)

Hence, all the bosons, which are not covered anymore by the
integral after T < T, go into the ground state.

N = Ny(T) +yJ- de




9.6 Formal Equations for Ideal Quantum Gas
Consider the substitution ¢ := ef* and x = Be:

N = oode—g(e) = Oc)de—ed/q_1
Ty Cepemr1 V) Trteher
d/q—l .
=y (kT)*/1 f dxfl—x-i-l = y(kKT)YIT(d/ ) f 4 (©)
In the same way deal with the energy:

B [°) g(f)f B © e.d/q
E —fo deieﬁ(e—u) F1 —]/J; deif_leﬁEi 1

xd/q+1—1

— d/q+1
y(kT) f de§1x+1

= y(T)YI(d/q + DfE 11 ()
Hence, the equation of state looks like:
pV qE kadi/qH(f) pV fdi/q+1(€)
———:-———:-———I————— = = T
N dN ) NKT 7,
Here and above, f;;' is the Fermi-Dirac integral and f;; the Bose-

Einstein integral (often f,,” = f, and f,; = g, is written):
n 1 n—lfe—x

7 © = )f §ler 1 l“(n)f Tree™

= mj; dx x"‘lfe"‘mzzo(+fe"‘)m

_L N T1\ymem+1 ° n-1,-(m+1)x
_F(n);(+1) £ fodxx e

3 1 ® ($1)m€m+1 . Y had .
TTm L Gt O f dyy' e = ) (FUTL

m=1
Here, the substitution y = (m + 1)x was used.

f

9.7 High Temperature Physics
In high temperature, Fermi and Bose gas obey the ideal gas law.
Here, the first correction term is evaluated.
For kT > Ep, uis negative and § = ef* < 1, hence:
N =y (/)74

= y(kT)*/9T(d/q) Z (Fm*t ”S:d/q
m—i N
S YWD
Using f;F(§) * € F&%/2"and (1 + x)* =~ 1 + ax:

- & +_¢
vV fdi/qﬂ(f) §Foam 1+ qajem

NKT ~ £ (©) £F RS
(17 zd/qﬂ)(lizf/q)
1+ (T e £ a7 € + 0

1+ (7 L, ) N
) 2a/a+1 = 24/a) y (kT)4/9T(d/q)
Recall y ~ V, hence define y := y/V and get:

~ y(kT)T(d/q)§

Q

2

p_N_I_<$ 1 + 1) 1 <N>

kT "V 24/q+1 = 2d/a) §(kT)4/aT(d /q) \V
=B(T)

Asin 7.1, B,(T) is the second virial coefficient.




10Appendixes

10.1 Sackur-Tetrode-Equation in d dimensions

(see also 3.1)

Let W<(E,V, N) be the number of microstates with an energy of
less than E. The surface of a D dimensional sphere S, (R) =
2mD/2
r(p/2)

RP~1 will be needed:

1
W< = W ff "'J- ddrlddpl oo ddrNdde

ZIi\I:l p%/2m<E

VN
:Wff d%p, - d%py
p<V2mE
YN opdN/2 \/Wd N
T haNIT@N/2) ), PP
2paN/ZyN g AN
= \2?mE
hANNIT(AN/2)dN " ™"
anN/ZvN
(ZmE)dN/Z

~ dNhINNIT(dN/2)
Now, conduct an Taylor expansion:
W(E,V,N,AE) = W=<(E + AE,V,N) — W<(E,V,N)
_OWS(E) n®N/2yN (2mE)N/2 AE

oE T RANNIT(dN/2) E
Hence, the entropy is, using I'(dN/2) = (dN/2 — 1)!

' aN N, wN/2yN (2mE) /2 AE

dN dN dN
<k () () ()

2
NI w2V (2mE)4/? o AE
" hd "E
dN_ /dN dN w2V (2mE)?/? AE
~ —NklnN+Nk—k—ln(—)+k—+Nkln ——— |+ In—
2 2 2 hd
= —Nkl N(dN v + Nk d+1 + Nkl Py @mE) +nlE
- 7) (E ) " hd "F
= Nk (d 1)+ NKl L n@mE)YE) A
BV i NP TYNTZ hd "E
N (7)
(1) + win (£ ()
=Nz + 1)+ Ny Gerew
Since N is huge, the last term is negligible.
The temperature can be calculate as follows:
1 0SS dNk £ d NET
T 0E 2E )

Hence, the Sackur-Tetrode-Equation becomes:

= e (S 1) 4 v (4 (2T
RV BVANT

—Nk(d+1>+Nk1 V1
-2 "\ g,
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